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Abstract
We present models related to the results of a recent experiment (the ‘VKS experiment’)
showing the generation of a magnetic field by a fully turbulent flow of liquid sodium. We first
discuss the geometry of the mean magnetic field when the two coaxial impellers driving the
flow counter-rotate at the same frequency. We then show how we expect this geometry to be
modified when the impellers rotate at different frequencies. We also show that, in the latter
case, dynamical regimes of the magnetic field can be easily understood from the interaction of
modes with dipolar (respectively quadrupolar) symmetry. In particular, this interaction
generates magnetic field reversals that have been observed in the experiment and display a
hierarchy of timescales similar to the Earth’s magnetic field: the duration of the steady phases is
widely distributed, but is always much longer than the time needed to switch polarity. In
addition to reversals, several other large scale features of the generated magnetic field are
obtained when varying the governing parameters of the flow. These results are also understood
in the framework of the same model.

(Some figures in this article are in colour only in the electronic version)

1. Introduction: the dynamo effect

It is strongly believed that planetary and stellar magnetic fields
are generated by a dynamo effect, i.e. an instability mechanism
that results from electromagnetic induction by the flow of an
electrically conducting fluid [1]. Maxwell’s equations together
with Ohm’s law give the governing equation of the magnetic
field, B(r, t). In the approximation of magnetohydrodynamics
(MHD), it takes the form

∂B

∂ t
= ∇ × (V × B) + 1

μ0σ
∇2B, (1)

where μ0 is the magnetic permeability of vacuum and σ is
the electrical conductivity. The last term on the right-hand
side of (1) represents ohmic dissipation, and the first one,
electromagnetic induction due to the velocity field V(r, t).
B = 0 is an obvious solution of (1) and, for V = 0, any
perturbation of B(r, t) (respectively of current density j(r, t))
decays to zero due to ohmic diffusion. B = 0 can be an

unstable solution if the induction term compensates ohmic
dissipation. The ratio of these two terms defines the magnetic
Reynolds number, Rm = μ0σ V L, where V is the typical
velocity amplitude and L is the typical length scale of the flow.
If V(r, t) has an appropriate geometry, perturbations of the
magnetic field grow when Rm becomes larger than a critical
value Rc

m (in the range 10–1000 for most studied examples).
Magnetic energy is generated from part of the mechanical work
used to drive the flow.

In order to describe the saturation of the magnetic field
above the dynamo threshold Rc

m, we need to take into account
its backreaction on the velocity field. V(r, t) is governed by
the Navier–Stokes equation:

∂V
∂ t

+(V·∇)V = −∇
(

p

ρ
+ B2

2μ0ρ

)
+ν∇2V+ 1

μ0ρ
(B·∇)B,

(2)
that we have restricted to the case of an incompressible flow
(∇ · V = 0). ν is the kinematic viscosity and ρ is the
fluid density. In the MHD approximation, the Lorenz force,
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j × B, can be split into the two terms involving B in (2). If
the modification of the flow under the action of the growing
magnetic field weakens the dynamo capability of the flow, the
dynamo bifurcation is supercritical, i.e. the magnetic field
grows continuously from zero when Rm is increased above Rc

m.
Assuming that the set of parameters defined so far fully

characterizes the problem, we should have another independent
dimensionless parameter besides Rm. We can choose either
the kinetic Reynolds number, Re = V L/ν, or the magnetic
Prandtl number, Pm = Rm/Re = μ0σν. Then, dimensional
analysis implies that we have Rc

m = f (Pm) for the dynamo
threshold and 〈B2〉 = μ0ρV 2g(Rm, Pm) for the mean
magnetic energy generated above the dynamo threshold. f
and g are arbitrary functions at this stage. Their dependence
on Pm (or equivalently on Re) can be related to the effect
of turbulence on the dynamo threshold and saturation. In
many realistic situations, more parameters should be taken
into account. For instance, f and g also depend on the
choice of boundary conditions (for instance, their electrical
conductivity, magnetic permeability, etc). In the context of
stellar or planetary dynamos, the effect of the rotation rate
� should also be taken into account via the Rossby, Ro =
V/�L, or Ekmann number E = ν/�L2.

For planetary or stellar dynamos, as well as for any
laboratory experiment performed with a liquid metal, we
have Pm < 10−5, the largest value being reached using
liquid sodium. This has strong consequences on the
dynamo bifurcation and makes the problem both difficult and
interesting. Pm being the ratio of the diffusive timescales of
the magnetic field and the velocity field, no direct numerical
simulation can handle such small values. In addition, Pm

being small implies that the flow is strongly turbulent when
the dynamo threshold is reached (Re ∼ Rc

m/Pm > 106).
Dynamo experiments thus provide a way to study an instability
problem from a fully turbulent state. Several interesting
questions arise: does the generated magnetic field involve
a mean large scale component, as observed in planetary or
stellar dynamos? What are the behaviours of f and g when
Pm → 0? Are they constant with respect to Pm in this limit,
thus giving Rc

m = constant and 〈B2〉 ∝ μ0ρV 2g(Rm), i.e.
〈B2〉 ∝ [ρ/(μ0σ

2 L2)]g(Rm) close to threshold [2]? What
is the effect of turbulent fluctuations on the bifurcation? Is
g(Rm) ∝ Rm − Rc

m, as for a usual supercritical bifurcation
close to threshold, or should we expect a behaviour involving
an anomalous exponent [3]? What is the effect of turbulent
fluctuations on the dynamics of the magnetic field?

2. The VKS experiment

The velocity field being turbulent above the dynamo threshold
for any experiment performed with a liquid metal, we can
use the Reynolds decomposition and write V(r, t) = V(r) +
ṽ(r, t), where V(r) is the mean flow and ṽ(r, t) are the
turbulent fluctuations. The overbar stands for a temporal
average in experiments. Thus, both the mean flow V(r) and the
fluctuations ṽ(r, t) are involved in the induction term of (1) and
one has to understand their respective effects on the dynamo
process.

Three successful fluid dynamo experiments have been
performed so far: the Karlsruhe experiment [4], the Riga
experiment [5] and the VKS experiment [6]. The VKS
experiment differs from the other two as follows: the
Karlsruhe and Riga experiments have been designed by
geometrically constraining a mean flow V(r) known for its
efficient dynamo action, the G O Roberts flow (respectively
the Ponomarenko flow) for the Karlsruhe (respectively Riga)
experiment. Turbulent fluctuations, roughly an order of
magnitude smaller than the mean flow, have been discarded,
and the experimentally observed dynamo threshold as well as
the geometry of the mean magnetic field have been found in
good agreement with these predictions, based only on the mean
flow.

The VKS experiment consists of a von Kármán swirling
flow of liquid sodium. It is generated in a cylinder by the
motion of two coaxial counter-rotating discs fitted with eight
blades (see figure 1). The mean flow has the following
characteristics: the fluid is ejected radially outward by the
discs; this drives an axial flow toward the discs along their axis
and a recirculation in the opposite direction along the cylinder
lateral boundary. In the case of counter-rotating impellers,
the presence of a strong axial shear of azimuthal velocity in
the mid-plane between the impellers generates a high level of
turbulent fluctuations, roughly of the same order as the mean
flow. It is thus unlikely that the fluctuations ṽ can be neglected
compared to V in (1). It has been indeed observed that, when
the discs counter-rotate with the same frequency, F1 = F2, a
stationary magnetic field is generated with a dominant axial
dipolar component, BP , together with a related azimuthal
component Bθ , as displayed in figure 1 (left) [6]. Such an
axisymmetric mean field cannot be generated by the mean
flow alone, V(r, x), which would give a non-axisymmetric
magnetic field according to the Cowling theorem [1], and also
as observed in numerical modelling performed using V(r, x)

alone [7]. Non-axisymmetric fluctuations ṽ(r, θ, x) thus play
an essential role. As explained in [3], a possible mechanism
is of α–ω type, the α effect being related to the helical motion
of the radially expelled fluid between two successive blades
of the impellers and the ω effect resulting from differential
rotation due to counter-rotation of the impellers. However, any
quantitative model of this effect should also take into account
the helicity of radial vortices generated by the shear flow in the
mid-plane that has the wrong sign to generate an axial mean
field from an α–ω mechanism.

Another possibility is an α2 mechanism for which the
mean field equation is very easy to find using symmetry
arguments. If one assumes that a closed equation exists for
the mean field B0, the mean induction term is, to leading
order, E = 〈V × B〉 � M · B0, where M is a 3 × 3
matrix. Rotational invariance about the rotation axis implies
E = aB0 − bx̂ × B0 + c(x̂ ·B0)x̂, where a, b and c can depend
weakly on x and x̂ is the unit vector along the rotation axis.
In the case of counter-rotating discs at the same frequency, the
experiment is invariant with respect to a rotation of π around
any axis located in the mid-plane between the two discs, say
Rπ . This implies b = 0 and shows that the equations for
the components Br(r, x, t) and Bx(r, x, t) of the mean field
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Figure 1. Possible eigenmodes of the VKS experiment. The two discs counter-rotate with frequency F1 and F2. Left: magnetic dipolar mode.
Right: magnetic quadrupolar mode. Poloidal (BP ) and toroidal (Bθ ) components are sketched.

are qualitatively different when the discs rotate at different
frequencies (see below).

In any case, the VKS dynamo is not generated by the mean
flow alone, in contrast to the Karlsruhe and Riga experiments,
and non-axisymmetric fluctuations play an essential role in
the dynamo process. Note also that the VKS dynamo has
been observed so far only when impellers made of soft iron
have been used. Indeed, it has been shown that magnetic
boundary conditions corresponding to the high permeability
limit significantly decrease the dynamo threshold [8].

3. Dynamics resulting from the interaction of dipolar
and quadrupolar modes

3.1. Modes and symmetries

The most striking feature of the VKS experiment is that
time-dependent magnetic fields are generated only when the
impellers rotate at different frequencies [9]. We will show
that this can be related to the additional invariance under
Rπ when F1 = F2. We indeed expect that, in that case,
the modes involved in the dynamics are either symmetric or
antisymmetric. Such modes are displayed in figure 1. A dipole
is changed to its opposite by Rπ , whereas a quadrupole is
unchanged. More generally, we name ‘dipole’ (respectively
‘quadrupole’) modes with dipolar (respectively quadrupolar)
symmetry even though they might involve a more complex
spatial structure.

We assume that the magnetic field is the sum of a dipolar
component with an amplitude D and a quadrupolar one, Q. We
define A = D + iQ and we assume that an expansion in power
of A and its complex conjugate Ā is pertinent close to threshold
in order to obtain an evolution equation for both modes. Taking
into account the invariance B → −B, i.e. A → −A, we obtain

Ȧ = μA + ν Ā + β1 A3 + β2 A2 Ā + β3 AĀ2 + β4 Ā3, (3)

where we limit the expansion to the lowest order nonlinearities.
In the general case, the coefficients are complex and depend on
the experimental parameters.

Symmetry of the experiment with respect to Rπ when
the discs exactly counter-rotate amounts to constraints on the
coefficients. Applying this transformation to the magnetic

modes changes D into −D and Q into Q, and thus A →
− Ā. We conclude that, in the case of exact counter-rotation,
all the coefficients are real. When the frequency difference
f is increased from zero, assuming that the coefficients are
analytical functions of f , we obtain that the real parts of the
coefficients are even and the imaginary parts are odd functions
of f .

When the coefficients are real, the growth rate of the
dipolar component is μr + νr and that of the quadrupolar
component is μr − νr . The dipole being observed for exact
counter-rotation implies that νr > 0 for f = 0. By
increasing f , we expect that νr changes sign and favours the
quadrupolar mode according to the experimental results (see
figure 3 in [10]).

We point out that equation (3) looks like the normal
forms for strong resonances, i.e. for the complex amplitude
of an oscillatory mode generated by a Hopf bifurcation in the
presence of an external forcing. The Ā (respectively Ā3) term
results from a forcing around twice (respectively 4 times) the
frequency of the oscillatory instability (see [11] for a study of
the bifurcations and resulting dynamics).

We note that a model involving coupled dipolar and
quadrupolar modes that bifurcate through Hopf bifurcations
instead of stationary ones, as considered here, has been
proposed to understand some features of the dynamics of the
magnetic field of the Sun [12].

3.2. A simple case

We first consider the simplest case for which the nonlinear
terms which break rotational invariance in the complex plane
are negligible (β1r ∼ β3r ∼ β4r ∼ 0) and we assume
β2r = −1 to ensure nonlinear saturation. We write

A = D + iQ = R exp(i(θ + θ0)), (4)

with θ0 such that ν exp(−2iθ0) = ρ is real. The imaginary part
of the equation for Ȧ then gives

θ̇ = μi − ρ sin 2θ. (5)

When the flow is perfectly symmetric, i.e. when the two
impellers rotate at the same frequency, μi = 0. Then for
μr + νr > 0, the system has two stable dipolar solutions
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(corresponding to both polarities). For 0 < μr − νr <

μr + νr , two quadrupolar modes are also solutions, but they
are unstable to a dipolar perturbation. When the symmetry
of the flow is broken, μi is different from zero and this can
strongly modify the behaviour of the solutions of the above
equation. For μi smaller than ρ, four solutions exist: θc and
π + θc are stable solutions while π/2 − θc and 3π/2 − θc

are unstable (2θc = arcsin(μi/ρ)). They correspond to mixed
modes, which evolve away from the purely dipolar modes, with
increasing quadrupolar contribution when μi is increased. For
μi = ρ, a bifurcation occurs: each stable solution collides
with an unstable solution and disappears. This is a saddle-
node bifurcation [11] that generates a limit cycle (and thus an
oscillatory magnetic field) for μi > ρ. Usually, saddle-node
bifurcations involve only one stable and one unstable fixed
point. Here the problem being invariant under B → −B yields
the existence of two pairs of stable and unstable fixed points
that simultaneously collide at the threshold of the saddle-node
bifurcation. This scenario is not restricted to the equation for θ

that we have considered here (see below).
We have thus found a simple mechanism to explain how

the dipolar modes, observed for counter-rotating impellers at
the same frequency F1 = F2 in the VKS experiment first
evolve to stationary solutions that also involve a larger and
larger quadrupolar component when the frequency difference
|F1 − F2| is increased. Then, for a critical value of |F1 − F2|,
a limit cycle is generated at finite amplitude and vanishing
frequency by a saddle-node bifurcation.

3.3. A generic bifurcation

More generally, consider a planar system invariant under the
transformation B → −B and with two different and nonzero
stationary solutions. One of the fixed points is unstable, Bu ,
and the other one is stable, Bs . The collision between the two
fixed points generates a cycle that connects the collision point
with its opposite, see figure 2. This result can be understood as
follows: the solution B = 0 is unstable with respect to the two
different fixed points, and their opposite. It is an unstable point,
whereas one of the two bifurcating solutions is a stable point,
a node, and the other is a saddle. If the saddle and the node
collide, say at Bc, what happens to initial conditions located
close to these points? They cannot be attracted by B = 0
which is unstable and they cannot reach other fixed points since
they just disappeared. Therefore the trajectories describe a
cycle. The associated orbit contains B = 0 since, for a planar
problem, in any orbit, there is a fixed point. Suppose that the
orbit created from Bc is different from the one created by −Bc.
These orbits being images by the transformation B → −B,
they must intersect at some point. Of course, this is not possible
for a planar system because it would violate the uniqueness of
the solutions. Therefore, there is only one cycle that connects
points close to Bc and −Bc.

This provides an elementary mechanism for field reversals
in the vicinity of a saddle-node bifurcation. First, in the
absence of fluctuations, the limit cycle generated at the saddle-
node bifurcation connects ±Bc. This corresponds to periodic
reversals. Slightly above the bifurcation threshold, the system

D

 Q

Bs

Bs

Bu

Bu

a

c

b

a′

Figure 2. A generic saddle-node bifurcation in a system with the
B → −B invariance: below threshold, fluctuations can drive the
system against its deterministic dynamics (phase a). If the effect of
fluctuations is large enough, this generates a reversal (phases b
and c). Otherwise, an excursion occurs (phase a′).

spends most of the time close to the two states of opposite
polarity ±Bc. Second, in the presence of fluctuations, random
reversals can be obtained slightly below the saddle-node
bifurcation. Bu being very close to Bs , even a fluctuation of
small intensity can drive the system to Bu from which it can be
attracted by −Bs , thus generating a reversal.

3.4. Different stationary dynamos

It has been observed in the VKS experiment that, for F1 	= F2,
dynamical regimes are separated by domains with different
stationary dynamos in parameter space [9, 10]. In our
model, these stationary dynamos correspond to fixed points
of equation (3). Taking into account the term Ā3 instead of
Ā and repeating the simple analysis of section 3.2 shows that
the saddle-node bifurcation involves four pairs of fixed points
due to the invariance A → A exp(iπ/2). More generally,
when all terms of (3) are taken into account, we can have
two pairs of different fixed points together with the ones of
opposite polarity, as observed in the experiment [10]. Their
stability analysis is easy in the regime of phase dynamics,
i.e. when the amplitude R involves a short timescale compared
to the phase θ . This occurs when μr is large compared to
μi , νr and νi and R then can be adiabatically eliminated
(R � R0(θ)), (3), thus leading to an equation of the form
θ̇ = G(θ). When the parameters are varied, the different
pairs of fixed points disappear via successive saddle-node
bifurcations as described above. There is a region in parameter
space (F1, F2) where the two saddle-node bifurcations occur
nearly simultaneously. Turbulent fluctuations then generate
complex dynamical regimes in which the different fixed points
are involved (see below).

3.5. Effect of fluctuations

We now use a simple model in order to describe the effect
of turbulent fluctuations on the dynamics of the two magnetic
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Figure 3. Time recordings obtained from equation (3) displaying different dynamics of the magnetic field, as observed in the VKS
experiment: reversals, symmetric bursts and asymmetric bursts (see the text).

modes governed by (3):

Ḋ = (μr + νr )D + (νi − μi)Q + C11 D3 + C21 D2 Q

+ C31 DQ2 + C41 Q3 + br1ζ1(t)D + br2ζ2(t)Q,

Q̇ = (μr − νr )Q + (νi + μi)D + C12 D3 + C22 D2 Q

+ C32 DQ2 + C42 Q3 + br3ζ3(t)D + br4ζ4(t)Q.

(6)

The nonlinear coefficients Ci j are derived from those of
equations (3). Turbulent fluctuations are modelled by the
terms ζi that are independent Gaussian white noises (with the
Stratonovich interpretation). We take μr = 1 and νr = μi =
νi = 0 such that phase dynamics results from the nonlinear
terms. We take β2r = −1, β1r = β3r = 0, β1i − β3i = −0.9,
β2i = −β4i = 0.12. We vary β1i + β3i and β4r in order
to favour one or the other pair of fixed points. We take
br1 = br4 = 0.25 and br2 = br3 = 0.07.

Random reversals are displayed in figure 3 (top) for β1i +
β3i = −0.021 and β4r = −0.06. For these parameters,
the low amplitude pairs of fixed points have just disappeared
via a saddle-node bifurcation. The system spends most of
the time close to the stable fixed points ±Bs . We observe in
figure 3 (top right) that a reversal consists of two phases. In the
first phase, the system evolves from the stable point Bs to the
unstable point Bu (in the phase space sketched in figure 2). The
deterministic part of the dynamics acts against this evolution
and the fluctuations are the motor of the dynamics. That phase
is thus slow. In the second phase, the system evolves from

Bu to −Bs , the deterministic part of the dynamics drives the
system and this phase is faster.

The behaviour of the system close to Bs depends on the
local flow. Close to the saddle-node bifurcation, the position
of Bs and Bu defines the slow direction of the dynamics. If
a component of Bu is smaller than the corresponding one of
Bs , that component displays an overshoot at the end of a
reversal. In the opposite case, that component will increase
at the beginning of a reversal. For instance, in the phase space
sketched in figure 2, the component D decreases at the end of a
reversal and the signal displays an overshoot. The component
Q increases just before a reversal.

For some fluctuations, the second phase does not connect
Bu to −Bs but to Bs . It is an aborted reversal or an excursion
in the context of the Earth dynamo. Note that, during the initial
phase, a reversal and an excursion are identical. In the second
phase, the approaches to the stationary phase differ because the
trajectory that links Bu and Bs is different from the trajectory
that links Bu and −Bs . In particular, if the reversals display an
overshoot this will not be the case of the excursion (see figure 3
(top right) and the sketch in figure 2).

If we choose the parameters such that the large amplitude
pairs of fixed points have just disappeared via a saddle-node
bifurcation instead of the small amplitude ones as above, we
obtain symmetric bursts displayed in figure 3 (bottom left) for
β1i + β3i = 0.025 and β4r = 0.03. From this regime, if we
favour further the low amplitude fixed points (β1i +β3i = 0.01
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and β4r = 0.06), we get asymmetric bursts displayed in
figure 3 (bottom right). All these regimes have also been
observed in the VKS experiment [10].

4. Conclusion

We have proposed a scenario for reversals of the magnetic field
generated by dynamo action in the VKS experiment. When the
impellers are counter-rotated at different frequencies, the flow
breaks the invariance by rotation Rπ , and thus couples modes
with dipolar and quadrupolar symmetries. This coupling
drives the system close to a saddle-node bifurcation, such
that even non-coherent turbulent fluctuations can generate a
reversal. The scenario offers a simple and unified explanation
for reversals of a vector field. In particular, it explains many
intriguing features of the reversals of the Earth’s magnetic
field [13]. In that case, dipolar and quadrupolar modes
are coupled when the flow in the core breaks the equatorial
symmetry. The most significant output of the model is that
it predicts specific characteristics observed both in the VKS
experiment as well as in palaeomagnetic records. It also
explains recent numerical simulations of the geodynamo that
have pointed out the importance of hydrodynamic symmetry
breaking during reversals [14, 15].

Finally, we note that two modes with the same symmetry
can be linearly coupled by a symmetric flow and display
the saddle-node bifurcation mentioned above. Nevertheless,
when dipolar and quadrupolar magnetic modes are involved,
reversals are favoured by breaking the discrete symmetry from
which these modes are defined.

Our model also provides an alternative description of
oscillatory dynamos, in contrast to Parker’s mechanism for the
solar cycle that involves a Hopf bifurcation.

References

[1] Moffatt H K 1978 Magnetic Field Generation in Electrically
Conducting Fluids (Cambridge: Cambridge University
Press)
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